There was a significant increase in the frequency of 11 homo......
There was a significant increase in the frequency of 11 homozygotes in 126 women with major depression (43.7%) compared to 304 women without major depression (25.7%), P =.001. More...
Positive relationships between CHRM2 and other components at different levels (count: 0)
Positive relationship network of CHRM2 in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between CHRM2 and MDD (count: 1)
Our data fail to support association with the CHRM2 polymorp......
Our data fail to support association with the CHRM2 polymorphisms previously implicated in the genetic aetiology of depression.More...
Negative relationships between CHRM2 and other components at different levels (count: 0)
Ca2+ that enters the cell from the outside is a principal so......
Ca2+ that enters the cell from the outside is a principal source of signal Ca2+. Entry of Ca2+ is driven by the presence of a large electrochemical gradient across the plasma membrane. Cells use this external source of signal Ca2+ by activating various entry channels with widely different properties. The voltage-operated channels (VOCs) are found in excitable cells and generate the rapid Ca2+ fluxes that control fast cellular processes. There are many other Ca2+-entry channels, such as the receptor-operated channels (ROCs), for example the NMDA (N-methyl-D-aspartate) receptors (NMDARs) that respond to glutamate. There also are second-messenger-operated channels (SMOCs) and store-operated channels (SOCs). The other principal source of Ca2+ for signalling is the internal stores that are located primarily in the endoplasmic/sarcoplasmic reticulum (ER/SR), in which inositol-1,4,5-trisphosphate receptors (IP3Rs) or ryanodine receptors (RYRs) regulate the release of Ca2+. The principal activator of these channels is Ca2+ itself and this process of Ca2+-induced Ca2+ release is central to the mechanism of Ca2+ signalling. Various second messengers or modulators also control the release of Ca2+. IP3, which is generated by pathways using different isoforms of phospholipase C (PLCbeta, delta, epsilon, gamma and zeta), regulates the IP3Rs. Cyclic ADP-ribose (cADPR) releases Ca2+ via RYRs. Nicotinic acid adenine dinucleotide phosphate (NAADP) may activate a distinct Ca2+ release mechanism on separate acidic Ca2+ stores. Ca2+ release via the NAADP-sensitive mechanism may also feedback onto either RYRs or IP3Rs. cADPR and NAADP are generated by CD38. This enzyme might be sensitive to the cellular metabolism, as ATP and NADH inhibit it. The influx of Ca2+ from the environment or release from internal stores causes a very rapid and dramatic increase in cytoplasmic calcium concentration, which has been widely exploited for signal transduction. Some proteins, such as troponin C (TnC) involved in muscle contraction, directly bind to and sense Ca2+. However, in other cases Ca2+ is sensed through intermediate calcium sensors such as calmodulin (CALM).More...
G protein-coupled receptors. The beta:gamma G-protein dimer ......
G protein-coupled receptors. The beta:gamma G-protein dimer is also involved in downstream signaling , and some receptors form part of metastable complexes of receptor and accessory proteins such as the arrestins. GPCRs are involved in many diverse signaling events , using a variety of pathways that include modulation of adenylyl cyclase, phospholipase C, the mitogen activated protein kinases (MAPKs), extracellular signal regulated kinase (ERK) c-Jun-NH2-terminal kinase (JNK) and p38 MAPK.More...
Rhodopsin-like receptors. They represent members which inclu......
Rhodopsin-like receptors. They represent members which include hormone, light and neurotransmitter receptors and encompass a wide range of functions including many autocrine, paracrine and endocrine processes.More...
There are more than 800 G-protein coupled receptor. GPCRs ar......
There are more than 800 G-protein coupled receptor. GPCRs are receptors for a diverse range of ligands from large proteins to photons and have an equal diverstiy of ligand-binding mechanisms. Classical GPCR signaling involves signal transduction via heterotrimeric G-proteins, however many G-protein independent mechanisms have been reported.More...
The classical signalling mechanism for G alpha (i) is inhibi......
The classical signalling mechanism for G alpha (i) is inhibition of the cAMP dependent pathway through inhibition of adenylate cyclase. Decreased production of cAMP from ATP results in decreased activity of cAMP-dependent protein kinases.More...
The class A (rhodopsin-like) GPCRs that bind to classical bi......
The class A (rhodopsin-like) GPCRs that bind to classical biogenic amine ligands are annotated here. The amines involved (acetylcholine, adrenaline, noradrenaline, dopamine, serotonin and histamine) can all act as neurotransmitters in humans. The so-called 'trace amines', used when referring to p-tyramine, beta-phenylethylamine, tryptamine and octopamine, can also bind to recently-discovered GPCRs.More...
CHRM2 related interactors from protein-protein interaction data in HPRD (count: 8)