
Gene Report
Approved Symbol | ADCY3 |
---|---|
Approved Name | adenylate cyclase 3 |
Symbol Alias | AC3 |
Location | 2p23.3 |
Position | chr2:25042038-25142055 (-) |
External Links |
Entrez Gene: 109 Ensembl: ENSG00000138031 UCSC: uc002rfs.4 HGNC ID: 234 |
No. of Studies (Positive/Negative) | 1(0/1)
![]() |
Type | Literature-origin; SNP mapped |
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus | Protein and Other Molecule | Cell and Molecular Pathway | Neural System | Cognition and Behavior | Symptoms and Signs | Environment | MDD |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node. Right-click will show also the menus to link to the report page of the node and remove the node and related edges. Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web

Name in Literature | Reference | Research Type | Statistical Result | Relation Description |
---|---|---|---|---|
ADCY3 | Wray, 2010 | patients and normal controls | Top ten ranked genes from gene-based test for genes +/-50 kb...... Top ten ranked genes from gene-based test for genes +/-50 kb from start and stop positions More... |
#rs | Location | Annotation | No. of Studies (Positive/Negative) | |
---|---|---|---|---|
rs2384061 | chr2:25135620(Forward) | intron_variant | 1(0/1) |
Approved Name | UniportKB | No. of Studies (Positive/Negative) | Source | |
---|---|---|---|---|
Adenylate cyclase type 3 | O60266 | 0(0/0) | Gene mapped |
Literature-origin GO terms | ||||
ID | Name | Type | Evidence | |
---|---|---|---|---|
GO:0007268 | synaptic transmission | biological process | TAS | |
GO:0032553 | ribonucleotide binding | molecular function | IEA | |
GO:0004016 | adenylate cyclase activity | molecular function | IEA |
Gene mapped GO terms | ||||
ID | Name | Type | Evidence | |
---|---|---|---|---|
GO:0007189 | adenylate cyclase-activating G-protein coupled receptor signaling pathway | biological process | TAS | |
GO:0046872 | metal ion binding | molecular function | IEA | |
GO:0044281 | small molecule metabolic process | biological process | TAS | |
GO:0006112 | energy reserve metabolic process | biological process | TAS | |
GO:0005524 | ATP binding | molecular function | IEA | |
GO:0005516 | calmodulin binding | molecular function | IEA | |
GO:0007608 | sensory perception of smell | biological process | IEA | |
GO:0055085 | transmembrane transport | biological process | TAS | |
GO:0005887 | integral to plasma membrane | cellular component | TAS[9920776] | |
GO:0008543 | fibroblast growth factor receptor signaling pathway | biological process | TAS | |
GO:0048011 | nerve growth factor receptor signaling pathway | biological process | TAS | |
GO:0006833 | water transport | biological process | TAS | |
GO:0035556 | intracellular signal transduction | biological process | IEA | |
GO:0034199 | activation of protein kinase A activity | biological process | TAS | |
GO:0007202 | activation of phospholipase C activity | biological process | TAS | |
GO:0007193 | adenylate cyclase-inhibiting G-protein coupled receptor signaling pathway | biological process | TAS | |
GO:0007173 | epidermal growth factor receptor signaling pathway | biological process | TAS | |
GO:0007165 | signal transduction | biological process | TAS | |
GO:0005886 | plasma membrane | cellular component | IDA[11549699]; TAS | |
GO:0005737 | cytoplasm | cellular component | IDA[11549699] | |
GO:0071377 | cellular response to glucagon stimulus | biological process | TAS |
Literature-origin KEGG pathway | ||||
ID | Name | Brief Description | Full Description | |
---|---|---|---|---|
hsa04270 | vascular smooth_muscle_contraction | Vascular smooth muscle contraction | The vascular smooth muscle cell (VSMC) is a highly specializ...... The vascular smooth muscle cell (VSMC) is a highly specialized cell whose principal function is contraction. On contraction, VSMCs shorten, thereby decreasing the diameter of a blood vessel to regulate the blood flow and pressure. The principal mechanisms that regulate the contractile state of VSMCs are changes in cytosolic Ca2+ concentration (c). In response to vasoconstrictor stimuli, Ca2+ is mobilized from intracellular stores and/or the extracellular space to increase c in VSMCs. The increase in c, in turn, activates the Ca2+-CaM-MLCK pathway and stimulates MLC20 phosphorylation, leading to myosin-actin interactions and, hence, the development of contractile force. The sensitivity of contractile myofilaments or MLC20 phosphorylation to Ca2+ can be secondarily modulated by other signaling pathways. During receptor stimulation, the contractile force is greatly enhanced by the inhibition of myosin phosphatase. Rho/Rho kinase, PKC, and arachidonic acid have been proposed to play a pivotal role in this enhancement. The signaling events that mediate relaxation include the removal of a contractile agonist (passive relaxation) and activation of cyclic nucleotide-dependent signaling pathways in the continued presence of a contractile agonist (active relaxation). Active relaxation occurs through the inhibition of both Ca2+ mobilization and myofilament Ca2+ sensitivity in VSMCs. More... | |
hsa04020 | calcium signaling_pathway | Calcium signaling pathway | Ca2+ that enters the cell from the outside is a principal so...... Ca2+ that enters the cell from the outside is a principal source of signal Ca2+. Entry of Ca2+ is driven by the presence of a large electrochemical gradient across the plasma membrane. Cells use this external source of signal Ca2+ by activating various entry channels with widely different properties. The voltage-operated channels (VOCs) are found in excitable cells and generate the rapid Ca2+ fluxes that control fast cellular processes. There are many other Ca2+-entry channels, such as the receptor-operated channels (ROCs), for example the NMDA (N-methyl-D-aspartate) receptors (NMDARs) that respond to glutamate. There also are second-messenger-operated channels (SMOCs) and store-operated channels (SOCs). The other principal source of Ca2+ for signalling is the internal stores that are located primarily in the endoplasmic/sarcoplasmic reticulum (ER/SR), in which inositol-1,4,5-trisphosphate receptors (IP3Rs) or ryanodine receptors (RYRs) regulate the release of Ca2+. The principal activator of these channels is Ca2+ itself and this process of Ca2+-induced Ca2+ release is central to the mechanism of Ca2+ signalling. Various second messengers or modulators also control the release of Ca2+. IP3, which is generated by pathways using different isoforms of phospholipase C (PLCbeta, delta, epsilon, gamma and zeta), regulates the IP3Rs. Cyclic ADP-ribose (cADPR) releases Ca2+ via RYRs. Nicotinic acid adenine dinucleotide phosphate (NAADP) may activate a distinct Ca2+ release mechanism on separate acidic Ca2+ stores. Ca2+ release via the NAADP-sensitive mechanism may also feedback onto either RYRs or IP3Rs. cADPR and NAADP are generated by CD38. This enzyme might be sensitive to the cellular metabolism, as ATP and NADH inhibit it. The influx of Ca2+ from the environment or release from internal stores causes a very rapid and dramatic increase in cytoplasmic calcium concentration, which has been widely exploited for signal transduction. Some proteins, such as troponin C (TnC) involved in muscle contraction, directly bind to and sense Ca2+. However, in other cases Ca2+ is sensed through intermediate calcium sensors such as calmodulin (CALM). More... |
Gene mapped KEGG pathways | ||||
ID | Name | Brief Description | Full Description | |
---|---|---|---|---|
hsa00230 | purine metabolism | Purine metabolism | ||
hsa04914 | progesterone mediated_oocyte_maturation | Progesterone-mediated oocyte maturation | Xenopus oocytes are naturally arrested at G2 of meiosis I. E...... Xenopus oocytes are naturally arrested at G2 of meiosis I. Exposure to either insulin/IGF-1 or the steroid hormone progesterone breaks this arrest and induces resumption of the two meiotic division cycles and maturation of the oocyte into a mature, fertilizable egg. This process is termed oocyte maturation. The transition is accompanied by an increase in maturation promoting factor (MPF or Cdc2/cyclin B) which precedes germinal vesicle breakdown (GVBD). Most reports point towards the Mos-MEK1-ERK2 pathway and the polo-like kinase/CDC25 pathway as responsible for the activation of MPF in meiosis, most likely triggered by a decrease in cAMP. More... | |
hsa04912 | gnrh signaling_pathway | GnRH signaling pathway | Gonadotropin-releasing hormone (GnRH) secretion from the hyp...... Gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus acts upon its receptor in the anterior pituitary to regulate the production and release of the gonadotropins, LH and FSH. The GnRHR is coupled to Gq/11 proteins to activate phospholipase C which transmits its signal to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates the intracellular protein kinase C (PKC) pathway and IP3 stimulates release of intracellular calcium. In addition to the classical Gq/11, coupling of Gs is occasionally observed in a cell-specific fashion. Signaling downstream of protein kinase C (PKC) leads to transactivation of the epidermal growth factor (EGF) receptor and activation of mitogen-activated protein kinases (MAPKs), including extracellular-signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAPK. Active MAPKs translocate to the nucleus, resulting in activation of transcription factors and rapid induction of early genes. More... | |
hsa04916 | melanogenesis | Melanogenesis | Cutaneous melanin pigment plays a critical role in camouflag...... Cutaneous melanin pigment plays a critical role in camouflage, mimicry, social communication, and protection against harmful effects of solar radiation. Melanogenesis is under complex regulatory control by multiple agents. The most important positive regulator of melanogenesis is the MC1 receptor with its ligands melanocortic peptides. MC1R activates the cyclic AMP (cAMP) response-element binding protein (CREB). Increased expression of MITF and its activation by phosphorylation (P) stimulate the transcription of tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and dopachrome tautomerase (DCT), which produce melanin. Melanin synthesis takes place within specialized intracellular organelles named melanosomes. Melanin-containing melanosomes then move from the perinuclear region to the dendrite tips and are transferred to keratinocytes by a still not well-characterized mechanism. More... | |
hsa04962 | vasopressin regulated_water_reabsorption | Vasopressin-regulated water reabsorption | In the kidney, the antidiuretic hormone vasopressin (AVP) is...... In the kidney, the antidiuretic hormone vasopressin (AVP) is a critical regulator of water homeostasis by controlling the water movement from lumen to the interstitium for water reabsorption and adjusting the urinary water excretion. In normal physiology, AVP is secreted into the circulation by the posterior pituitary gland, in response to an increase in serum osmolality or a decrease in effective circulating volume. When reaching the kidney, AVP binds to V2 receptors on the basolateral surface of the collecting duct epithelium, triggering a G-protein-linked signaling cascade, which leads to water channel aquaporin-2 (AQP2) vesicle insertion into the apical plasma membrane. This results in higher water permeability in the collecting duct and, driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels, which are constitutively expressed on the basolateral side of these cells. When isotonicity is restored, reduced blood AVP levels results in AQP2 internalization, leaving the apical membrane watertight again. More... | |
hsa04062 | chemokine signaling_pathway | Chemokine signaling pathway | Inflammatory immune response requires the recruitment of leu...... Inflammatory immune response requires the recruitment of leukocytes to the site of inflammation upon foreign insult. Chemokines are small chemoattractant peptides that provide directional cues for the cell trafficking and thus are vital for protective host response. In addition, chemokines regulate plethora of biological processes of hematopoietic cells to lead cellular activation, differentiation and survival. The chemokine signal is transduced by chemokine receptors (G-protein coupled receptors) expressed on the immune cells. After receptor activation, the alpha- and beta-gamma-subunits of G protein dissociate to activate diverse downstream pathways resulting in cellular polarization and actin reorganization. Various members of small GTPases are involved in this process. Induction of nitric oxide and production of reactive oxygen species are as well regulated by chemokine signal via calcium mobilization and diacylglycerol production. More... | |
hsa04114 | oocyte meiosis | Oocyte meiosis | During meiosis, a single round of DNA replication is followe...... During meiosis, a single round of DNA replication is followed by two rounds of chromosome segregation, called meiosis I and meiosis II. At meiosis I, homologous chromosomes recombine and then segregate to opposite poles, while the sister chromatids segregate from each other at meoisis II. In vertebrates, immature oocytes are arrested at the PI (prophase of meiosis I). The resumption of meiosis is stimulated by progesterone, which carries the oocyte through two consecutive M-phases (MI and MII) to a second arrest at MII. The key activity driving meiotic progression is the MPF (maturation-promoting factor), a heterodimer of CDC2 (cell division cycle 2 kinase) and cyclin B. In PI-arrested oocytes, MPF is initially inactive and is activated by the dual-specificity CDC25C phosphatase as the result of new synthesis of Mos induced by progesterone. MPF activation mediates the transition from the PI arrest to MI. The subsequent decrease in MPF levels, required to exit from MI into interkinesis, is induced by a negative feedback loop, where CDC2 brings about the activation of the APC (anaphase-promoting complex), which mediates destruction of cyclin B. Re-activation of MPF for MII requires re-accumulation of high levels of cyclin B as well as the inactivation of the APC by newly synthesized Emi2 and other components of the CSF (cytostatic factor), such as cyclin E or high levels of Mos. CSF antagonizes the ubiquitin ligase activity of the APC, preventing cyclin B destruction and meiotic exit until fertilization occurs. Fertilization triggers a transient increase in cytosolic free Ca2+, which leads to CSF inactivation and cyclin B destruction through the APC. Then eggs are released from MII into the first embryonic cell cycle. More... | |
hsa04740 | olfactory transduction | Olfactory transduction | Within the compact cilia of the olfactory receptor neurons (...... Within the compact cilia of the olfactory receptor neurons (ORNs) a cascade of enzymatic activity transduces the binding of an odorant molecule to a receptor into an electrical signal that can be transmitted to the brain. Odorant molecules bind to a receptor protein (R) coupled to an olfactory specific Gs-protein (G) and activate a type III adenylyl cyclase (AC), increasing intracellular cAMP levels. cAMP targets an olfactory-specific cyclic-nucleotide gated ion channel (CNG), allowing cations, particularly Na and Ca, to flow down their electrochemical gradients into the cell, depolarizing the ORN. Furthermore, the Ca entering the cell is able to activate a Ca-activated Cl channel, which would allow Cl to flow out of the cell, thus further increasing the depolarization. Elevated intracellular Ca causes adaptation by at least two different molecular steps: inhibition of the activity of adenylyl cyclase via CAMKII-dependent phosphorylation and down-regulation of the affinity of the CNG channel to cAMP.Longer exposure to odorants can stimulate particulate guanylyl cyclase in cilia to produce cGMP and activate PKG, leading to a further increase in amount and duration of intracellular cAMP levels, which may serve to convert inactive forms of protein kinase A (PKA2) to active forms (PKA*). As part of a feedback loop, PKA can inhibit the activation of particulate guanylyl cyclase. More... | |
hsa05414 | dilated cardiomyopathy | Dilated cardiomyopathy | Dilated cardiomyopathy (DCM) is a heart muscle disease chara...... Dilated cardiomyopathy (DCM) is a heart muscle disease characterised by dilation and impaired contraction of the left or both ventricles that results in progressive heart failure and sudden cardiac death from ventricular arrhythmia. Genetically inherited forms of DCM (familial DCM) have been identified in 25-35% of patients presenting with this disease, and the inherited gene defects are an important cause of familial DCM. The pathophysiology may be separated into two categories: defects in force generation and defects in force transmission. In cases where an underlying pathology cannot be identified, the patient is diagnosed with an idiopathic DCM. Current hypotheses regarding causes of idiopathic DCM focus on chronic viral myocarditis and/or on autoimmune abnormalities. Viral myocarditis may progress to an autoimmune phase and then to progressive cardiac dilatation. Antibodies to the beta1-adrenergic receptor (beta1AR), which are detected in a substantial number of patients with idiopathic DCM, may increase the concentration of intracellular cAMP and intracellular Ca2+, a condition often leading to a transient hyper-performance of the heart followed by depressed heart function and heart failure. More... | |
hsa05110 | vibrio cholerae_infection | Vibrio cholerae infection | Cholera toxin (CTX) is one of the main virulence factors of ...... Cholera toxin (CTX) is one of the main virulence factors of Vibrio cholerae. Once secreted, CTX B-chain (CTXB) binds to ganglioside GM1 on the surface of the host's cells. After binding takes place, the entire CTX complex is carried from plasma membrane (PM) to endoplasmic reticulum (ER). In the ER, the A-chain (CTXA) is recognized by protein disulfide isomerase (PDI), unfolded, and delivered to the membrane where the membrane-associated ER-oxidase, Ero1, oxidizes PDI to release the CTXA into the protein-conducting channel, Sec61. CTXA is then retro-translocated to the cytosol and induces water and electrolyte secretion by increasing cAMP levels via adenylate cyclase (AC) to exert toxicity. Other than CTX, Vibrio cholerae generates several toxins that are perilous to eukaryotic cells. Zonula occludens toxin (ZOT) causes tight junction disruption through protein kinase C-dependent actin polymerization. RTX toxin (RtxA) causes actin depolymerization by covalently cross-linking actin monomers into dimers, trimers, and higher multimers. Vibrio cholerae cytolysin (VCC) is an important pore-forming toxin. The assembly of VCC anion channels in cells cause vacuolization and lysis. More... | |
hsa04540 | gap junction | Gap junction | Gap junctions contain intercellular channels that allow dire...... Gap junctions contain intercellular channels that allow direct communication between the cytosolic compartments of adjacent cells. Each gap junction channel is formed by docking of two 'hemichannels', each containing six connexins, contributed by each neighboring cell. These channels permit the direct transfer of small molecules including ions, amino acids, nucleotides, second messengers and other metabolites between adjacent cells. Gap junctional communication is essential for many physiological events, including embryonic development, electrical coupling, metabolic transport, apoptosis, and tissue homeostasis. Communication through Gap Junction is sensitive to a variety of stimuli, including changes in the level of intracellular Ca2+, pH, transjunctional applied voltage and phosphorylation/dephosphorylation processes. This figure represents the possible activation routes of different protein kinases involved in Cx43 and Cx36 phosphorylation. More... |
Gene mapped Reactome pathways | |||
ID | Name | Description | |
---|---|---|---|
REACT_1161 | gs alpha_mediated_events_in_glucagon_signalling | Guanine nucleotide binding proteins or G proteins constitute...... Guanine nucleotide binding proteins or G proteins constitute a large family of proteins that transmit signals from membrane receptors to downstream effector molecules. Each G protein is composed of 3 subunits: alpha, beta and gamma. The alpha subunit binds to guanine nucleotide and is important for receptor coupling and effector activation. Each of s, i and q - forms of the alpha subunit has a functional specificity. About 4 isoforms of the beta subunit are known. Of the 12 subunits of gamma subunits known so far, subunits 1 and 9 are active in photoreceptor coupled signalling while others are expressed in various tissues. The beta and gamma subunits occur as dimers on the cell surface and the specific role, tissue occurrence and the binding preferences between isoforms of these subunits are still being unraveled. More... | |
REACT_15312 | adenylate cyclase_activating_pathway | Stimulatory G proteins activate adenylate cyclase, which dri...... Stimulatory G proteins activate adenylate cyclase, which drives the conversion of cAMP from ATP and in turn activates cAMP-dependent protein kinase and subsequent kinase pathways. More... | |
REACT_1665 | glucagon signaling_in_metabolic_regulation | Glucagon and insulin are peptide hormones released from the ...... Glucagon and insulin are peptide hormones released from the pancreas into the blood, that normally act in complementary fashion to stabilize blood glucose concentration. When blood glucose levels rise, insulin release stimulates glucose uptake from the blood, glucose breakdown. More... | |
REACT_19184 | downstream events_in_gpcr_signaling | G protein-coupled receptors. The beta:gamma G-protein dimer ...... G protein-coupled receptors. The beta:gamma G-protein dimer is also involved in downstream signaling , and some receptors form part of metastable complexes of receptor and accessory proteins such as the arrestins. GPCRs are involved in many diverse signaling events , using a variety of pathways that include modulation of adenylyl cyclase, phospholipase C, the mitogen activated protein kinases (MAPKs), extracellular signal regulated kinase (ERK) c-Jun-NH2-terminal kinase (JNK) and p38 MAPK. More... | |
REACT_19333 | g alpha_z_signalling_events | G alpha (z) is the alpha subunit of the heterotrimeric G pro...... G alpha (z) is the alpha subunit of the heterotrimeric G protein Gz, a member of the Gi family. It is pertussis toxin-insensitive and inhibits adenylyl cyclase types I, V and VI. G alpha (z) interacts with the Rap1 GTPase activating protein (Rap1GAP) to attenuate Rap1 signaling. Gz knockout mice have disrupted platelet aggregation at physiological concentrations of epinephrine and responses to several neuroactive drugs are altered. More... | |
REACT_20593 | post nmda_receptor_activation_events | Ca2+ influx through the NMDA receptor initiates subsequent m...... Ca2+ influx through the NMDA receptor initiates subsequent molecular pathways that have a defined role in establishing long-lasting synaptic changes. The molecular signaling initiated by a rise in Ca2+ within the spine leads to phosphorylation of Cyclic AMP Response Element binding protein (CREB) at serine 133 which is involved in the transcription of genes that results in long lasting changes in the synapse. The phosphorylation of CREB by increased Ca2+ can be brought about by distinct molecular pathways that may involve MAP kinase, activation of adenylate cyclase, activation of CaMKII and/or the activation of CaMKIV. More... | |
REACT_15370 | neuroransmitter receptor_binding_and_downstream_transmission_in_the_postsynaptic_cell | The neurotransmitter in the synaptic cleft released by the p...... The neurotransmitter in the synaptic cleft released by the pre-synaptic neuron binds specific receptors located on the post-synaptic terminal. These receptors are either ion channels or G protein coupled receptors that function to transmit the signals from the post-synaptic membrane to the cell body. More... | |
REACT_15295 | opioid signalling | Opioids are chemical substances similar to opiates, the acti...... Opioids are chemical substances similar to opiates, the active substances found in opium (morphine, codeine etc.). Opioid action is mediated by the receptors for endogenous opioids; peptides such as the enkephalins, the endorphins or the dynorphins. Opioids possess powerful analgesic and sedative effects, and are widely used as pain-killers. Their main side-effect is the rapid establishment of a strong addiction. Opioids receptors are G-protein coupled receptors (GPCR). There are four classes of receptors: mu (MOR), kappa (KOR) and delta (DOR), and the nociceptin receptor (NOP). More... | |
REACT_12079 | plc gamma1_signalling | The activation of phosphlipase C-gamma (PLC-gamma) and subse...... The activation of phosphlipase C-gamma (PLC-gamma) and subsequent mobilization of calcium from intracellular stores are essential for neurotrophin secretion. PLC-gamma is activated through the phosphorylation by TrkA receptor kinase and this form hydrolyses PIP2 to generate inositol tris-phosphate (IP3) and diacylglycerol (DAG). IP3 promotes the release of Ca2+ from internal stores and this results in activation of enzymes such as protein kinase C and Ca2+ calmodulin-regulated protein kinases. More... | |
REACT_15530 | pka activation | A number of inactive tetrameric PKA holoenzymes are produced...... A number of inactive tetrameric PKA holoenzymes are produced by the combination of homo- or heterodimers of the different regulatory subunits associated with two catalytic subunits. When cAMP binds to two specific binding sites on the regulatory subunits, these undergo a conformational change that causes the dissociation of a dimer of regulatory subunits bound to four cAMP from two monomeric, catalytically active PKA subunits. More... | |
REACT_1505 | integration of_energy_metabolism | Many hormones that affect individual physiological processes...... Many hormones that affect individual physiological processes including the regulation of appetite, absorption, transport, and oxidation of foodstuffs influence energy metabolism pathways. While insulin mediates the storage of excess nutrients, glucagon is involved in the mobilization of energy resources in response to low blood glucose levels, principally by stimulating hepatic glucose output. Small doses of glucagon are sufficient to induce significant glucose elevations. These hormone-driven regulatory pathways enable the body to sense and respond to changed amounts of nutrients in the blood and demands for energy. Glucagon and Insulin act through various metabolites and enzymes that target specific steps in metabolic pathways for sugar and fatty acids. The processes responsible for the long-term control of fat synthesis and short term control of glycolysis by key metabolic products and enzymes are annotated in this module as six specific pathways: Pathway 1. Glucagon signalling in metabolic pathways: In response to low blood glucose, pancreatic alpha-cells release glucagon. The binding of glucagon to its receptor results in increased cAMP synthesis, and Protein Kinase A - Copyright National Academy of Sciences, U.S.A.). More... | |
REACT_19231 | g alpha_i_signalling_events | The classical signalling mechanism for G alpha (i) is inhibi...... The classical signalling mechanism for G alpha (i) is inhibition of the cAMP dependent pathway through inhibition of adenylate cyclase. Decreased production of cAMP from ATP results in decreased activity of cAMP-dependent protein kinases. More... | |
REACT_13477 | transmission across_chemical_synapses | Chemical synapses are specialized junctions that are used fo...... Chemical synapses are specialized junctions that are used for communication between neurons, neurons and muscle or gland cells. The synapse involves a pre-synaptic neuron and a post-synaptic neuron, muscle cell or glad cell. The pre and the post-synaptic cell are separated by a gap of 20nm called the synaptic cleft. The signals pass in a unidirection from pre-synaptic to post-synaptic. The pre-synaptic neuron communicates via the release of neurotransmitter which bind the receptors on the post-synaptic cell. More... | |
REACT_15426 | plc beta_mediated_events | The phospholipase C (PLC) family of enzymes is both diverse ...... The phospholipase C (PLC) family of enzymes is both diverse and complex. The isoforms beta, gamma and delta (each have subtypes) make up the members of this family. PLC hydrolyzes phosphatidylinositol bisphosphate (PIP2) into two second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 mobilizes intracellular calcium stores while DAG activates protein kinase C isoforms which are involved in regulatory functions. More... | |
REACT_20563 | activation of_nmda_receptor_upon_glutamate_binding_and_postsynaptic_events | NMDA receptors are a subtype of ionotropic glutamate recepto...... NMDA receptors are a subtype of ionotropic glutamate receptors that are specifically activated by a glutamate agonist N-methyl-D-aspartate (NMDA). Activation of NMDA receptor involves opening of the ion channel that allows the influx of Ca2+. NMDA receptors are central to activity dependent changes in synaptic strength and are predominantly involved in the synaptic plasticity that pertain to learning and memory. A unique feature of NMDA receptor unlike other glutamate receptors is the requirement of dual activation of the NMDA receptor, which require both voltage dependent and ligand dependent activation. At resting membrane potential the NMDA receptors are blocked by Mg2+. The voltage dependent Mg2+ block is relieved upon depolarization of the post-synpatic membrane. The ligand dependent activation of the NMDA receptor requires co-activation by two ligands, namely glutamate and glycine. NMDA receptors are coincidence detector, and are activated only if there is simultaneous activation of both pre and post-synaptic cell. Upon activation NMDA receptors allow the influx of Ca2+ that initiates various molecular signaling cascades that are involved in the process of learning and memory. More... | |
REACT_11061 | signalling by_ngf | Neurotrophins (NGF, BDNF, NT-3, NT-4/5) play pivotal roles i...... Neurotrophins (NGF, BDNF, NT-3, NT-4/5) play pivotal roles in survival, differentiation, and plasticity of neurons in the peripheral and central nervous system. They are produced, and secreted in minute amounts, by a variety of tissues. They signal through two types of receptors: TRK tyrosine kinase receptors (TRKA, TRKB, TRKC), which specifically interact with the different neurotrophins, and p75NTR, which interacts with all neurotrophins. TRK receptors are reported in a variety of tissues in addition to neurons. p75NTRs are also widespread. Neurotrophins and their receptors are synthesized as several different splice variants, which differ in terms of their biological activities. The nerve growth factor (NGF) was the first growth factor to be identified and has served as a model for studying the mechanisms of action of neurotrophins and growth factors. The mechanisms by which NGF generates diverse cellular responses have been studied extensively in the rat pheochromocytoma cell line PC12. When exposed to NGF, PC12 cells exit the cell cycle and differentiate into sympathetic neuron-like cells. Current data show that signalling by the other neurotrophins is similar to NGF signalling. More... | |
REACT_12056 | trka signalling_from_the_plasma_membrane | Trk receptors signal from the plasma membrane and from intra...... Trk receptors signal from the plasma membrane and from intracellular membranes, particularly from early endosomes. Signalling from the plasma membrane is fast but transient; signalling from endosomes is slower but long lasting. Signalling from the plasma membrane is annotated here. TRK signalling leads to proliferation in some cell types and neuronal differentiation in others. Proliferation is the likely outcome of short term signalling, as observed following stimulation of EGFR (EGF receptor). Long term signalling via TRK receptors, instead, was clearly shown to be required for neuronal differentiation in response to neurotrophins. More... | |
REACT_9053 | cam pathway | Calmodulin (CaM) is a small acidic protein that contains fou...... Calmodulin (CaM) is a small acidic protein that contains four EF-hand motifs, each of which can bind a calcium ion, therefore it can bind up to four calcium ions. The protein has two approximately symmetrical domains, separated by a flexible hinge region. Calmodulin is the prototypical example of the EF-hand family of Ca2+-sensing proteins. Changes in intracellular Ca2+ concentration regulate calmodulin in three distinct ways. First, by directing its subcellular distribution. Second, by promoting association with different target proteins. Third, by directing a variety of conformational states in calmodulin that result in target-specific activation. Calmodulin binds and activates several effector protein (e.g. the CaM-dependent adenylyl cyclases, phosphodiesterases, protein kinases and the protein phosphatase calcineurin). More... | |
REACT_19327 | g alpha_s_signalling_events | The general function of the G alpha (s) subunit (Gs) is to a...... The general function of the G alpha (s) subunit (Gs) is to activate adenylate cyclase, which in turn produces cAMP, leading to the activation of cAMP-dependent protein kinases (often referred to collectively as Protein Kinase A). The signal from the ligand-stimulated GPCR is amplified because the receptor can activate several Gs heterotrimers before it is inactivated. More... |
