Positive relationships between MAPK12 and MDD (count: 0)
Positive relationships between MAPK12 and other components at different levels (count: 1)
Genetic/epigenetic locus
Protein and other molecule
Cell and molecular pathway
Neural system
Cognition and behavior
Symptoms and signs
Environment
Positive relationship network of MAPK12 in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between MAPK12 and MDD (count: 0)
Negative relationships between MAPK12 and other components at different levels (count: 0)
Activation of T lymphocytes is a key event for an efficient ......
Activation of T lymphocytes is a key event for an efficient response of the immune system. It requires the involvement of the T-cell receptor (TCR) as well as costimulatory molecules such as CD28. Engagement of these receptors through the interaction with a foreign antigen associated with major histocompatibility complex molecules and CD28 counter-receptors B7.1/B7.2, respectively, results in a series of signaling cascades. These cascades comprise an array of protein-tyrosine kinases, phosphatases, GTP-binding proteins and adaptor proteins that regulate generic and specialised functions, leading to T-cell proliferation, cytokine production and differentiation into effector cells.More...
Neurotrophins are a family of trophic factors involved in di......
Neurotrophins are a family of trophic factors involved in differentiation and survival of neural cells. The neurotrophin family consists of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). Neurotrophins exert their functions through engagement of Trk tyrosine kinase receptors or p75 neurotrophin receptor (p75NTR). Neurotrophin/Trk signaling is regulated by connecting a variety of intracellular signaling cascades, which include MAPK pathway, PI-3 kinase pathway, and PLC pathway, transmitting positive signals like enhanced survival and growth. On the other hand, p75NTR transmits both positive and nagative signals. These signals play an important role for neural development and additional higher-order activities such as learning and memory.More...
During meiosis, a single round of DNA replication is followe......
During meiosis, a single round of DNA replication is followed by two rounds of chromosome segregation, called meiosis I and meiosis II. At meiosis I, homologous chromosomes recombine and then segregate to opposite poles, while the sister chromatids segregate from each other at meoisis II. In vertebrates, immature oocytes are arrested at the PI (prophase of meiosis I). The resumption of meiosis is stimulated by progesterone, which carries the oocyte through two consecutive M-phases (MI and MII) to a second arrest at MII. The key activity driving meiotic progression is the MPF (maturation-promoting factor), a heterodimer of CDC2 (cell division cycle 2 kinase) and cyclin B. In PI-arrested oocytes, MPF is initially inactive and is activated by the dual-specificity CDC25C phosphatase as the result of new synthesis of Mos induced by progesterone. MPF activation mediates the transition from the PI arrest to MI. The subsequent decrease in MPF levels, required to exit from MI into interkinesis, is induced by a negative feedback loop, where CDC2 brings about the activation of the APC (anaphase-promoting complex), which mediates destruction of cyclin B. Re-activation of MPF for MII requires re-accumulation of high levels of cyclin B as well as the inactivation of the APC by newly synthesized Emi2 and other components of the CSF (cytostatic factor), such as cyclin E or high levels of Mos. CSF antagonizes the ubiquitin ligase activity of the APC, preventing cyclin B destruction and meiotic exit until fertilization occurs. Fertilization triggers a transient increase in cytosolic free Ca2+, which leads to CSF inactivation and cyclin B destruction through the APC. Then eggs are released from MII into the first embryonic cell cycle.More...
Gonadotropin-releasing hormone (GnRH) secretion from the hyp......
Gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus acts upon its receptor in the anterior pituitary to regulate the production and release of the gonadotropins, LH and FSH. The GnRHR is coupled to Gq/11 proteins to activate phospholipase C which transmits its signal to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates the intracellular protein kinase C (PKC) pathway and IP3 stimulates release of intracellular calcium. In addition to the classical Gq/11, coupling of Gs is occasionally observed in a cell-specific fashion. Signaling downstream of protein kinase C (PKC) leads to transactivation of the epidermal growth factor (EGF) receptor and activation of mitogen-activated protein kinases (MAPKs), including extracellular-signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 MAPK. Active MAPKs translocate to the nucleus, resulting in activation of transcription factors and rapid induction of early genes.More...
Leishmania is an intracellular protozoan parasite of macroph......
Leishmania is an intracellular protozoan parasite of macrophages that causes visceral, mucosal, and cutaneous diseases. The parasite is transmitted to humans by sandflies, where they survive and proliferate intracellularly by deactivating the macrophage. Successful infection of Leishmania is achieved by alteration of signaling events in the host cell, leading to enhanced production of the autoinhibitory molecules like TGF-beta and decreased induction of cytokines such as IL12 for protective immunity. Nitric oxide production is also inhibited. In addition, defective expression of major histocompatibility complex (MHC) genes silences subsequent T cell activation mediated by macrophages, resulting in abnormal immune responses.More...
Specific families of pattern recognition receptors are respo......
Specific families of pattern recognition receptors are responsible for detecting various pathogens and generating innate immune responses. The intracellular NOD-like receptor (NLR) family contains more than 20 members in mammals and plays a pivotal role in the recognition of intracellular ligands. NOD1 and NOD2, two prototypic NLRs, sense the cytosolic presence of the bacterial peptidoglycan fragments that escaped from endosomal compartments, driving the activation of NF-{kappa}B and MAPK, cytokine production and apoptosis. On the other hand, a different set of NLRs induces caspase-1 activation through the assembly of multiprotein complexes called inflammasomes. These NLRs include NALP1, NALP3 and Ipaf. The inflammasomes are critical for generating mature proinflammatory cytokines in concert with Toll-like receptor signaling pathway.More...
Fc epsilon RI-mediated signaling pathways in mast cells are ......
Fc epsilon RI-mediated signaling pathways in mast cells are initiated by the interaction of antigen (Ag) with IgE bound to the extracellular domain of the alpha chain of Fc epsilon RI. The activation pathways are regulated both positively and negatively by the interactions of numerous signaling molecules. Mast cells that are thus activated release preformed granules which contain biogenic amines (especially histamines) and proteoglycans (especially heparin). The activation of phospholipase A2 causes the release of membrane lipids followed by development of lipid mediators such as leukotrienes (LTC4, LTD4 and LTE4) and prostaglandins (especially PDG2). There is also secretion of cytokines, the most important of which are TNF-alpha, IL-4 and IL-5. These mediators and cytokines contribute to inflammatory responses.More...
The mitogen-activated protein kinase (MAPK) cascade is a hig......
The mitogen-activated protein kinase (MAPK) cascade is a highly conserved module that is involved in various cellular functions, including cell proliferation, differentiation and migration. Mammals express at least four distinctly regulated groups of MAPKs, extracellular signal-related kinases (ERK)-1/2, Jun amino-terminal kinases (JNK1/2/3), p38 proteins (p38alpha/beta/gamma/delta) and ERK5, that are activated by specific MAPKKs: MEK1/2 for ERK1/2, MKK3/6 for the p38, MKK4/7 (JNKK1/2) for the JNKs, and MEK5 for ERK5. Each MAPKK, however, can be activated by more than one MAPKKK, increasing the complexity and diversity of MAPK signalling. Presumably each MAPKKK confers responsiveness to distinct stimuli. For example, activation of ERK1/2 by growth factors depends on the MAPKKK c-Raf, but other MAPKKKs may activate ERK1/2 in response to pro-inflammatory stimuli.More...
Leukocyte migaration from the blood into tissues is vital fo......
Leukocyte migaration from the blood into tissues is vital for immune surveillance and inflammation. During this diapedesis of leukocytes, the leukocytes bind to endothelial cell adhesion molecules (CAM) and then migrate across the vascular endothelium. A leukocyte adherent to CAMs on the endothelial cells moves forward by leading-edge protrusion and retraction of its tail. In this process, alphaL /beta2 integrin activates through Vav1, RhoA, which subsequently activates the kinase p160ROCK. ROCK activation leads to MLC phosphorylation, resulting in retraction of the actin cytoskeleton. Moreover, Leukocytes activate endothelial cell signals that stimulate endothelial cell retraction during localized dissociation of the endothelial cell junctions. ICAM-1-mediated signals activate an endothelial cell calcium flux and PKC, which are required for ICAM-1 dependent leukocyte migration. VCAM-1 is involved in the opening of the endothelial passage through which leukocytes can extravasate. In this regard, VCAM-1 ligation induces NADPH oxidase activation and the production of reactive oxygen species (ROS) in a Rac-mediated manner, with subsequent activation of matrix metallopoteinases and loss of VE-cadherin-mediated adhesion.More...
Xenopus oocytes are naturally arrested at G2 of meiosis I. E......
Xenopus oocytes are naturally arrested at G2 of meiosis I. Exposure to either insulin/IGF-1 or the steroid hormone progesterone breaks this arrest and induces resumption of the two meiotic division cycles and maturation of the oocyte into a mature, fertilizable egg. This process is termed oocyte maturation. The transition is accompanied by an increase in maturation promoting factor (MPF or Cdc2/cyclin B) which precedes germinal vesicle breakdown (GVBD). Most reports point towards the Mos-MEK1-ERK2 pathway and the polo-like kinase/CDC25 pathway as responsible for the activation of MPF in meiosis, most likely triggered by a decrease in cAMP.More...
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal......
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal, degenerative disorder of motor neurons. The hallmark of this disease is the selective death of motor neurons in the brain and spinal cord, leading to paralysis of voluntary muscles. Mutant superoxide dismutase 1 (SOD1), as seen in some familial amyotrophic lateral sclerosis (FALS) cases, may be toxic because it is unstable, forming aggregates in the motor neuron cytoplasm, axoplasm and mitochondria. Within mitochondria, mutant SOD1 may interfere with the anti-apoptotic function of Bcl-2, affect mitochondrial import by interfering with the translocation machinery (TOM/TIM), and generate toxic free radicals (ROS) via aberrant superoxide chemistry. These changes may then result in abnormal mitochondrial energy metabolism, Ca2+ handling, and release of pro-apoptotic factors. Reactive oxygen species (ROS), produced within mitochondria, inhibit the function of EAAT2, the main glial glutamate transporter protein, responsible for most of the reuptake of synaptically released glutamate. Glutamate excess causes neurotoxicity by increasing intracellular calcium, which enhances oxidative stress and mitochondrial damage. Mutant SOD1 can also trigger oxidative reactions by various means including by increasing levels of peroxynitrite, which can then cause damage through the formation of hydroxyl radicals or via nitration of tyrosine residues on proteins. Nitration may target neurofilament proteins, disrupting their phosphorylation and affecting axonal transport. Collectively, these mechanisms (or a combination thereof) are predicted to disturb cellular homeostasis (within glial and/or motor neurons), ultimately triggering motor neuron death.More...
Specific families of pattern recognition receptors are respo......
Specific families of pattern recognition receptors are responsible for detecting viral pathogens and generating innate immune responses. Non-self RNA appearing in a cell as a result of intracellular viral replication is recognized by a family of cytosolic RNA helicases termed RIG-I-like receptors (RLRs). The RLR proteins include RIG-I, MDA5, and LGP2 and are expressed in both immune and nonimmune cells. Upon recognition of viral nucleic acids, RLRs recruit specific intracellular adaptor proteins to initiate signaling pathways that lead to the synthesis of type I interferon and other inflammatory cytokines, which are important for eliminating viruses.More...
Specific families of pattern recognition receptors are respo......
Specific families of pattern recognition receptors are responsible for detecting microbial pathogens and generating innate immune responses. Toll-like receptors (TLRs) are membrane-bound receptors identified as homologs of Toll in Drosophila. Mammalian TLRs are expressed on innate immune cells, such as macrophages and dendritic cells, and respond to the membrane components of Gram-positive or Gram-negative bacteria. Pathogen recognition by TLRs provokes rapid activation of innate immunity by inducing production of proinflammatory cytokines and upregulation of costimulatory molecules. TLR signaling pathways are separated into two groups: a MyD88-dependent pathway that leads to the production of proinflammatory cytokines with quick activation of NF-{kappa}B and MAPK, and a MyD88-independent pathway associated with the induction of IFN-beta and IFN-inducible genes, and maturation of dendritic cells with slow activation of NF-{kappa}B and MAPK.More...
Epithelial cell signaling in Helicobacter pylori infection
Two major virulence factors of H. pylori are the vacuolating......
Two major virulence factors of H. pylori are the vacuolating cytotoxin (VacA) and the cag type-IV secretion system (T4SS) and its translocated effector protein, cytotoxin-associated antigen A (CagA). VacA binds to lipid rafts and glycosylphosphatidylinositol-anchored proteins (GPI-APs) of the target cell membrane. After insertion into the plasma membrane, VacA channels are endocytosed and eventually reach late endosomal compartments, increasing their permeability to anions with enhancement of the electrogenic vacuolar ATPase (v-ATPase) proton pump. In the presence of weak bases, osmotically active acidotropic ions will accumulate in the endosomes. This leads to water influx and vesicle swelling, an essential step in vacuole formation. In addition, it is reported that the VacA cleavage product binds to the tyrosine phosphatase receptor zeta (Ptprz) on epithelial cells and the induced signaling leads to the phosphorylation of the G protein-coupled receptor kinase-interactor 1 (Git1) and induces ulcerogenesis in mice. The other virulence factor cag T4SS mediates the translocation of the effector protein CagA, which is subsequently phosphorylated by a Src kinase. Phosphorylated CagA interacts with the protein tyrosine phosphatase SHP-2, thus stimulating its phosphatase activity. Activated SHP-2 is able to induce MAPK signalling through Ras/Raf-dependent and -independent mechanisms. Deregulation of this pathway by CagA may lead to abnormal proliferation and movement of gastric epithelial cells.More...
There is now much evidence that VEGFR-2 is the major mediato......
There is now much evidence that VEGFR-2 is the major mediator of VEGF-driven responses in endothelial cells and it is considered to be a crucial signal transducer in both physiologic and pathologic angiogenesis. The binding of VEGF to VEGFR-2 leads to a cascade of different signaling pathways, resulting in the up-regulation of genes involved in mediating the proliferation and migration of endothelial cells and promoting their survival and vascular permeability. For example, the binding of VEGF to VEGFR-2 leads to dimerization of the receptor, followed by intracellular activation of the PLCgamma;PKC-Raf kinase-MEK-mitogen-activated protein kinase (MAPK) pathway and subsequent initiation of DNA synthesis and cell growth, whereas activation of the phosphatidylinositol 3' -kinase (PI3K)-Akt pathway leads to increased endothelial-cell survival. Activation of PI3K, FAK, and p38 MAPK is implicated in cell migration signaling.More...
The ever evolving mitogen-activated protein kinase (MAP kina......
The ever evolving mitogen-activated protein kinase (MAP kinase) pathways consist of four major groupings and numerous related proteins which constitute interrelated signal transduction cascades activated by stimuli such as growth factors, stress, cytokines and inflammation. The four major groupings are the Erk (red), JNK or SAPK (blue), p38 (green) and the Big MAPK or ERK5 (light blue) cascades. Signals from cell surface receptors such as GPCRs and growth factor receptors are transduced, directly or via small G proteins such as ras and rac, to multiple tiers of protein kinases that amplify these signals and/or regulate each other. The diagram is organized to illustrate the cascades by the background colors and also the tiers of kinases as indicated down the left hand side and separated by the horizontal dashed lines. In some cascades the first activation tier involves the MAPKKKKs, MAP kinase kinase kinase kinases or MAP4K proteins. The next tier are the serine/threonine MAPKKKs, MAP kinase kinase kinase or MAP3Ks such as RAF, TAK, ASK, and MEKK1. This level has the greatest amount of cross-communication curently known. The serine/threonine/tyrosine MAPKKs, MAP Kinase kinases or MAP2Ks, such as the MKK and MEK kinases, are one step up from the MAP kinase cascade, phosphorylating and activating these kinases. The focal tier, the MAPKs or MAP kinases includes JNK1, p38, and ERKs, and are the kinases that give each cascade its name BR>The endpoints of these cascades, shown in the bottom tier, includes the MAPK activated protein kinases (MAPKAPK) and some of the numerous transcription factors that regulate genes involved in apoptosis, inflammation, cell growth and differentiation NOTES:- The shared color and the bold arrows show the major flow of each cascade. - The smaller arrows indicate cross communication between cascades. In many cases this is restricted to certain cell types or requires additional factors. - Kinases that have been identified as MAP kinases based on sequence or structural homolgies but have not yet been assigned to a cascade have been placed out side the grouping backrgounds. - The PAKs (p21 associated kinases) are not MAPKs but participate in the transduction to the JNK cascade are included for this reason.) - MEK4 appears to function in both the JNK and p38 cascades and so has a mixed color. MEK4 signal is much stronger in the JNK than the p38 cascade and so the bold arrow towards the JNK and the dashed arrow towards the p38 cascade indicate the relative strengths of signaling. - For space and readability concerns not all interactions and stimuli are indicated and the scaffold and phosphatase proteins are not shown.More...
NGF induces sustained activation of p38, a member of the MAP......
NGF induces sustained activation of p38, a member of the MAPK family. Both p38 and the ERKs appear to be involved in neurite outgrowth and differentiation caused by NGF in PC12 cells. As a matter of fact, PC12 cell differentiation appears to involve activation of both ERK/MAPK and p38. Both ERK/MAPK and p38 pathways contribute to the phosphorylation of the transcription factor CREB and the activation of immediate-early genes. p38 activation by NGF may occur by at least two mechanisms, involving SRC or MEK kinases.More...
Trk receptors signal from the plasma membrane and from intra......
Trk receptors signal from the plasma membrane and from intracellular membranes, particularly from early endosomes. Signalling from the plasma membrane is fast but transient; signalling from endosomes is slower but long lasting. Signalling from the plasma membrane is annotated here. TRK signalling leads to proliferation in some cell types and neuronal differentiation in others. Proliferation is the likely outcome of short term signalling, as observed following stimulation of EGFR (EGF receptor). Long term signalling via TRK receptors, instead, was clearly shown to be required for neuronal differentiation in response to neurotrophins.More...
Neurotrophins utilize multiple pathways to activate ERKs (ER......
Neurotrophins utilize multiple pathways to activate ERKs (ERK1 and ERK2), a subgroup of the large MAP kinase (MAPK) family, from the plasma membrane. The major signalling pathways to ERKs are via RAS, ocurring from caveolae in the plasma membrane or from clathrin-coated vesicles, and via RAP1, taking place in early endosomes. Whereas RAS activation by NGF is transient, RAP1 activation by NGF is sustained for hours.More...
Neurotrophins (NGF, BDNF, NT-3, NT-4/5) play pivotal roles i......
Neurotrophins (NGF, BDNF, NT-3, NT-4/5) play pivotal roles in survival, differentiation, and plasticity of neurons in the peripheral and central nervous system. They are produced, and secreted in minute amounts, by a variety of tissues. They signal through two types of receptors: TRK tyrosine kinase receptors (TRKA, TRKB, TRKC), which specifically interact with the different neurotrophins, and p75NTR, which interacts with all neurotrophins. TRK receptors are reported in a variety of tissues in addition to neurons. p75NTRs are also widespread. Neurotrophins and their receptors are synthesized as several different splice variants, which differ in terms of their biological activities. The nerve growth factor (NGF) was the first growth factor to be identified and has served as a model for studying the mechanisms of action of neurotrophins and growth factors. The mechanisms by which NGF generates diverse cellular responses have been studied extensively in the rat pheochromocytoma cell line PC12. When exposed to NGF, PC12 cells exit the cell cycle and differentiate into sympathetic neuron-like cells. Current data show that signalling by the other neurotrophins is similar to NGF signalling.More...
Signalling through Shc adaptor proteins appears to be identi......
Signalling through Shc adaptor proteins appears to be identical for both NGF and EGF. It leads to a fast, but transient, MAPK/ERK activation, which is insufficient to explain the prolonged activation of MAPK found in NGF-treated cells.More...
MAPK12 related interactors from protein-protein interaction data in HPRD (count: 19)