Genes altered in major depressive disorder
Genes altered in major depressive disorder
Positive relationships between MAG and other components at different levels (count: 0)
Positive relationship network of MAG in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between MAG and MDD (count: 0)
Negative relationships between MAG and other components at different levels (count: 0)
Cell adhesion molecules are (glyco)proteins expressed on the......
Cell adhesion molecules are (glyco)proteins expressed on the cell surface and play a critical role in a wide array of biologic processes that include hemostasis, the immune response, inflammation, embryogenesis, and development of neuronal tissue. There are four main groups: the integrin family, the immunoglobulin superfamily, selectins, and cadherins. Membrane proteins that mediate immune cellcell interactions fall into different categories, namely those involved in antigen recognition, costimulation and cellular adhesion. Furthermore cell-cell adhesions are important for brain morphology and highly coordinated brain functions such as memory and learning. During early development of the nervous system, neurons elongate their axons towards their targets and establish and maintain synapses through formation of cell-cell adhesions. Cell-cell adhesions also underpin axon-axon contacts and link neurons with supporting schwann cells and oligodendrocytes.More...
Two principal mechanisms limit blood loss after vascular inj......
Two principal mechanisms limit blood loss after vascular injury. Initially, platelets are activated, adhere to the site of the injury, and aggregate into a plug that limits blood loss. Proteins and small molecules released from activated platelets stimulate the plug formation process, and fibrinogen from the plasma forms bridges between activated platelets. These events allow the initiation of the clotting cascade, the second mechanism to limit blood loss. Negatively charged phospholipids exposed on cell surfaces at the site of injury and on activated platelets interact with tissue factor, setting off a cascade of reactions leading to generation of fibrin and the formation of an insoluble fibrin clot that strengthens the platelet plug.More...
Humans are exposed to millions of potential pathogens daily,......
Humans are exposed to millions of potential pathogens daily, through contact, ingestion, and inhalation. Our ability to avoid infection depends on the adaptive immune system and during the first critical hours and days of exposure to a new pathogen, our innate immune system.More...
Leukocyte extravasation is a rigorously controlled process t......
Leukocyte extravasation is a rigorously controlled process that guides white cell movement from the vascular lumen to sites of tissue inflammation. The powerful adhesive interactions that are required for leukocytes to withstand local flow at the vessel wall is a multistep process mediated by different adhesion molecules. Platelets adhered to injured vessel walls form strong adhesive substrates for leukocytes. For instance, the initial tethering and rolling of leukocytes over the site of injury are mediated by reversible binding of selectins to their cognate cell-surface glycoconjugates. Endothelial cells are tightly connected through various proteins, which regulate the organization of the junctional complex and bind to cytoskeletal proteins or cytoplasmic interaction partners that allow the transfer of intracellular signals. An important role for these junctional proteins in governing the transendothelial migration of leukocytes under normal or inflammatory conditions has been established. This pathway describes some of the key interactions that assist in the process of platelet and leukocyte interaction with the endothelium, in response to injury.More...
Neurotrophins (NGF, BDNF, NT-3, NT-4/5) play pivotal roles i......
Neurotrophins (NGF, BDNF, NT-3, NT-4/5) play pivotal roles in survival, differentiation, and plasticity of neurons in the peripheral and central nervous system. They are produced, and secreted in minute amounts, by a variety of tissues. They signal through two types of receptors: TRK tyrosine kinase receptors (TRKA, TRKB, TRKC), which specifically interact with the different neurotrophins, and p75NTR, which interacts with all neurotrophins. TRK receptors are reported in a variety of tissues in addition to neurons. p75NTRs are also widespread. Neurotrophins and their receptors are synthesized as several different splice variants, which differ in terms of their biological activities. The nerve growth factor (NGF) was the first growth factor to be identified and has served as a model for studying the mechanisms of action of neurotrophins and growth factors. The mechanisms by which NGF generates diverse cellular responses have been studied extensively in the rat pheochromocytoma cell line PC12. When exposed to NGF, PC12 cells exit the cell cycle and differentiate into sympathetic neuron-like cells. Current data show that signalling by the other neurotrophins is similar to NGF signalling.More...
Besides signalling through the tyrosine kinase receptors TRK......
Besides signalling through the tyrosine kinase receptors TRK A, B, and C, the mature neurotrophins NGF, BDNF, and NT3/4 signal through their common receptor p75NTR. NGF binding to p75NTR activates a number of downstream signalling events controlling survival, death, proliferation, and axonogenesis, according to the cellular context. p75NTR is devoid of enzymatic activity, and signals by recruiting other proteins to its own intracellular domain. p75 interacting proteins include NRIF, TRAF2, 4, and 6, NRAGE, necdin, SC1, NADE, RhoA, Rac, ARMS, RIP2, FAP and PLAIDD. Here we annotate only the proteins for which a clear involvement in p75NTR signalling was demonstrated. A peculiarity of p75NTR is the ability to bind the pro-neurotrophins proNGF and proBDNF. Proneurotrophins do not associate with TRK receptors, whereas they efficiently signal cell death by apoptosis through p75NTR. The biological action of neurotrophins is thus regulated by proteolytic cleavage, with proforms preferentially activating p75NTR, mediating apoptosis, and mature forms activating TRK receptors, to promote survival. Moreover, the two receptors are utilised to differentially modulate neuronal plasticity. For instance, proBDNF-p75NTR signalling facilitates LTD, long term depression, in the hippocampus , while BDNF-TRKB signalling promotes LTP (long term potentiation). Many biological observations indicate a functional interaction between p75NTR and TRKA signaling pathways.More...
Basigin is a widely expressed transmembrane glycoprotein tha......
Basigin is a widely expressed transmembrane glycoprotein that belongs to the Ig superfamily and is highly enriched on the surface of epithelial cells. Basigin is involved in intercellular interactions involved in various immunologic phenomena, differentiation, and development, but a major function of basigin is stimulation of synthesis of several matrix metalloproteinases. Basigin also induces angiogenesis via stimulation of VEGF production. Basigin has an extracellular region with two Ig-like domains of which the N-term Ig-like domain is involved in interactions. It undergoes interactions between basigin molecules on opposing cells or on neighbouring cells. It also interacts with a variety of other proteins like caveolin-1, cyclophilins, integrins and annexin II that play important roles in cell proliferation, energy metabolism, migration, adhesion and motion, especially in cancer metastasis.More...
MAG related interactors from protein-protein interaction data in HPRD (count: 13)