Genes differentially expressed in major depression
Genes differentially expressed in major depression
Positive relationships between FZR1 and other components at different levels (count: 0)
Positive relationship network of FZR1 in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between FZR1 and MDD (count: 0)
Negative relationships between FZR1 and other components at different levels (count: 0)
Protein ubiquitination plays an important role in eukaryotic......
Protein ubiquitination plays an important role in eukaryotic cellular processes. It mainly functions as a signal for 26S proteasome dependent protein degradation. The addition of ubiquitin to proteins being degraded is performed by a reaction cascade consisting of three enzymes, named E1 (ubiquitin activating enzyme), E2 (ubiquitin conjugating enzyme), and E3 (ubiquitin ligase). Each E3 has specificity to its substrate, or proteins to be targeted by ubiquitination. Many E3s are discovered in eukaryotes and they are classified into four types: HECT type, U-box type, single RING-finger type, and multi-subunit RING-finger type. Multi-subunit RING-finger E3s are exemplified by cullin-Rbx E3s and APC/C. They consist of a RING-finger-containing subunit (RBX1 or RBX2) that functions to bind E2s, a scaffold-like cullin molecule, adaptor proteins, and a target recognizing subunit that binds substrates.More...
Mitotic cell cycle progression is accomplished through a rep......
Mitotic cell cycle progression is accomplished through a reproducible sequence of events, DNA replication (S phase) and mitosis (M phase) separated temporally by gaps known as G1 and G2 phases. Cyclin-dependent kinases (CDKs) are key regulatory enzymes, each consisting of a catalytic CDK subunit and an activating cyclin subunit. CDKs regulate the cell's progression through the phases of the cell cycle by modulating the activity of key substrates. Downstream targets of CDKs include transcription factor E2F and its regulator Rb. Precise activation and inactivation of CDKs at specific points in the cell cycle are required for orderly cell division. Cyclin-CDK inhibitors (CKIs), such as p16Ink4a, p15Ink4b, p27Kip1, and p21Cip1, are involved in the negative regulation of CDK activities, thus providing a pathway through which the cell cycle is negatively regulated. Eukaryotic cells respond to DNA damage by activating signaling pathways that promote cell cycle arrest and DNA repair. In response to DNA damage, the checkpoint kinase ATM phosphorylates and activates Chk2, which in turn directly phosphorylates and activates p53 tumor suppressor protein. p53 and its transcriptional targets play an important role in both G1 and G2 checkpoints. ATR-Chk1-mediated protein degradation of Cdc25A protein phosphatase is also a mechanism conferring intra-S-phase checkpoint activation.More...
Xenopus oocytes are naturally arrested at G2 of meiosis I. E......
Xenopus oocytes are naturally arrested at G2 of meiosis I. Exposure to either insulin/IGF-1 or the steroid hormone progesterone breaks this arrest and induces resumption of the two meiotic division cycles and maturation of the oocyte into a mature, fertilizable egg. This process is termed oocyte maturation. The transition is accompanied by an increase in maturation promoting factor (MPF or Cdc2/cyclin B) which precedes germinal vesicle breakdown (GVBD). Most reports point towards the Mos-MEK1-ERK2 pathway and the polo-like kinase/CDC25 pathway as responsible for the activation of MPF in meiosis, most likely triggered by a decrease in cAMP.More...
Emi1 destruction in early mitosis requires the SCFTrCP ubiqu......
Emi1 destruction in early mitosis requires the SCFTrCP ubiquitin ligase complex. Binding of TrCP to Emi1 occurs in late prophase and requires phosphorylation at the DSGxxS consensus motif as well as Cdk mediated phosphorylation. A two-step mechanism has been proposed in which the phosphorylation of Emi1 by Cdc2 occurs after the G2-M transition followed soon after by binding of TrCP to the DSGxxS phosphorylation sites. Emi1 is then poly-ubiquitinated and degraded by the 26S proteasome.More...
The activity of the APC/C must be appropriately regulated du......
The activity of the APC/C must be appropriately regulated during the cell cycle to ensure the timely degradation of its substrates. Of particular importance is the conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase. Phosphorylation of both the APC/C complex and Cdh1 regulate this conversion. During mitosis, several APC/C subunits are phosphorylated increasing the activity of APC/C:Cdc20. However, phosphorylation of Cdh1 by mitotic Cyclin:Cdk complexes prevents it from activating the APC/C. Dephosphorylation of Cdh1 in late anaphase by Cdc14a results in the activation of APC/C:Cdh1.More...
Cdh1 is degraded by the APC/C during in G1 and G0. This auto......
Cdh1 is degraded by the APC/C during in G1 and G0. This auto-regulation may contribute to reducing the levels of Cdh1 levels during G1 and G0.More...
The actual synthesis of DNA occurs in the S phase of the cel......
The actual synthesis of DNA occurs in the S phase of the cell cycle. This includes the initiation of DNA replication, when the first nucleotide of the new strand is laid down during the synthesis of the primer. The DNA replication preinitiation events begin in late M or early G1 phase.More...
The replication of the genome and the subsequent segregation......
The replication of the genome and the subsequent segregation of chromosomes into daughter cells are controlled by a series of events collectively known as the cell cycle. DNA replication is carried out during a discrete temporal period known as the S (synthesis)-phase, and chromosome segregation occurs during a massive reorganization to cellular architecture at mitosis. Two gap-phases separate these major cell cycle events: G1 between mitosis and S-phase, and G2 between S-phase and mitosis. In the development of the human body, cells can exit the cell cycle for a period and enter a quiescent state known as G0, or terminally differentiate into cells that will not divide again, but undergo morphological development to carry out the wide variety of specialized functions of individual tissues. A family of protein serine/threonine kinases known as the cyclin-dependent kinases (CDKs) controls progression through the cell cycle. As the name suggests, the activity of the catalytic subunit is dependent on binding to a cyclin partner. The human genome encodes several cyclins and several CDKs, with their names largely derived from the order in which they were identified. The oscillation of cyclin abundance is one important mechanism by which these enzymes phosphorylate key substrates to promote events at the relevant time and place. Additional regulatory proteins and post-translational modifications ensure that CDK activity is precisely regulated, frequently confined to a narrow window of activity.More...
DNA synthesis occurs in the S phase, or the synthesis phase,......
DNA synthesis occurs in the S phase, or the synthesis phase, of the cell cycle. The cell duplicates its hereditary material, and two copies of the chromosome are formed. As DNA replication continues, the E type cyclins shared by the G1 and S phases, are destroyed and the levels of the mitotic cyclins rise.More...
The APC/C is activated by either Cdc20 or Cdh1. While both a......
The APC/C is activated by either Cdc20 or Cdh1. While both activators associate with the APC/C, they do so at different points in the cell cycle and their binding is regulated differently. Cdc20, whose protein levels increase as cells enter into mitosis and decrease upon mitotic exit, only associates with the APC/C during M phase. Cdh1 associates with the APC/C in G1. This interaction is inhibited at other times by Cdk1 phosphorylation.More...
FZR1 related interactors from protein-protein interaction data in HPRD (count: 10)