Genes differentially expressed in major depression
Genes differentially expressed in major depression
Positive relationships between ATP1A3 and other components at different levels (count: 0)
Positive relationship network of ATP1A3 in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between ATP1A3 and MDD (count: 0)
Negative relationships between ATP1A3 and other components at different levels (count: 0)
Contraction of the heart is a complex process initiated by t......
Contraction of the heart is a complex process initiated by the electrical excitation of cardiac myocytes (excitation-contraction coupling, ECC). In cardiac myocytes, Ca2+ influx induced by activation of voltage-dependent L-type Ca channels (DHP receptors) upon membrane depolarization triggers the release of Ca2+ via Ca2+ release channels (ryanodine receptors) of sarcoplasmic reticulum (SR) through a Ca2+ -induced Ca release (CICR) mechanism. Ca2+ ions released via the CICR mechanism diffuse through the cytosolic space to contractile proteins to bind to troponinC resulting in the release of inhibition induced by troponinI. The Ca2+ binding to troponinC thereby triggers the sliding of thin and thick filaments, that is, the activation of a crossbridge and subsequent cardiac force development and/or cell shortening. Recovery occurs as Ca2+ is pumped out of the cell by the Na+/Ca2+ exchanger (NCX) or is returned to the sarcoplasmic reticulum (SR) by sarco(endo)plasmic Ca2+ -ATPase (SERCA) pumps on the non-junctional region of the SR.More...
Sodium transport across the tight epithelia of Na+ reabsorbi......
Sodium transport across the tight epithelia of Na+ reabsorbing tissues such as the distal part of the kidney nephron and colon is the major factor determining total-body Na+ levels, and thus, long-term blood pressure. Aldosterone plays a major role in sodium and potassium metabolism by binding to epithelial mineralocorticoid receptors (MR) in the renal collecting duct cells localized in the distal nephron, promoting sodium resorption and potassium excretion. Aldosterone enters a target cell and binds MR, which translocates into the nucleus and regulates gene transcription. Activation of MR leads to increased expression of Sgk-1, which phosphorylates Nedd4-2, an ubiquitin-ligase which targets ENAC to proteosomal degradation. Phosphorylated Nedd4-2 dissociates from ENAC, increasing its apical membrane abundance. Activation of MR also leads to increased expression of Na+/K+-ATPase, thus causing a net increase in sodium uptake from the renal filtrate. The specificity of MR for aldosterone is provided by 11beta-HSD2 by the rapid conversion of cortisol to cortisone in renal cortical collecting duct cells. Recently, besides genomic effects mediated by activated MR, rapid aldosterone actions that are independent of translation and transcription have been documented.More...
One of the major tasks of the renal proximal tubule (PT) is ......
One of the major tasks of the renal proximal tubule (PT) is to secrete acid into the tubule lumen, thereby reabsorbing approximately 80% of the filtered bicarbonate (HCO3(-)), as well as generating new HCO3(-) for regulating blood pH. In the tubular lumen, filtered HCO3(-) combines with H(+) in a reaction catalyzed by CA IV. The CO2 thus produced rapidly diffuses into the tubular cells and is combined with water to produce intracellular H(+) and HCO3(-), catalyzed by soluble cytoplasmic CA II. HCO3(-) is then cotransported with Na(+) into blood via the NBC-1. The intracellular H(+) produced by CA II is secreted into the tubular lumen predominantly via the NHE-3. The PT creates the new HCO3(-) by taking glutamine and metabolizing it to two molecules each of NH4(+) and HCO3(-). The NH4(+) is excreted into the tubular lumen, and the HCO3(-) , which is new HCO3(-) , is returned to the blood, where it replaces the HCO3(-) lost earlier in the titration of nonvolatile acids.More...
ATP1A3 related BioCarta pathways (count: 0)
ATP1A3 related Reactome pathways (count: 0)
ATP1A3 related interactors from protein-protein interaction data in HPRD (count: 1)