Down regulation, fold change([MD] vs [C]) 2.2498465
Down regulation, fold change([MD] vs [C]) 2.2498465
Positive relationships between PDE1C and other components at different levels (count: 0)
Positive relationship network of PDE1C in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between PDE1C and MDD (count: 0)
Negative relationships between PDE1C and other components at different levels (count: 0)
Ca2+ that enters the cell from the outside is a principal so......
Ca2+ that enters the cell from the outside is a principal source of signal Ca2+. Entry of Ca2+ is driven by the presence of a large electrochemical gradient across the plasma membrane. Cells use this external source of signal Ca2+ by activating various entry channels with widely different properties. The voltage-operated channels (VOCs) are found in excitable cells and generate the rapid Ca2+ fluxes that control fast cellular processes. There are many other Ca2+-entry channels, such as the receptor-operated channels (ROCs), for example the NMDA (N-methyl-D-aspartate) receptors (NMDARs) that respond to glutamate. There also are second-messenger-operated channels (SMOCs) and store-operated channels (SOCs). The other principal source of Ca2+ for signalling is the internal stores that are located primarily in the endoplasmic/sarcoplasmic reticulum (ER/SR), in which inositol-1,4,5-trisphosphate receptors (IP3Rs) or ryanodine receptors (RYRs) regulate the release of Ca2+. The principal activator of these channels is Ca2+ itself and this process of Ca2+-induced Ca2+ release is central to the mechanism of Ca2+ signalling. Various second messengers or modulators also control the release of Ca2+. IP3, which is generated by pathways using different isoforms of phospholipase C (PLCbeta, delta, epsilon, gamma and zeta), regulates the IP3Rs. Cyclic ADP-ribose (cADPR) releases Ca2+ via RYRs. Nicotinic acid adenine dinucleotide phosphate (NAADP) may activate a distinct Ca2+ release mechanism on separate acidic Ca2+ stores. Ca2+ release via the NAADP-sensitive mechanism may also feedback onto either RYRs or IP3Rs. cADPR and NAADP are generated by CD38. This enzyme might be sensitive to the cellular metabolism, as ATP and NADH inhibit it. The influx of Ca2+ from the environment or release from internal stores causes a very rapid and dramatic increase in cytoplasmic calcium concentration, which has been widely exploited for signal transduction. Some proteins, such as troponin C (TnC) involved in muscle contraction, directly bind to and sense Ca2+. However, in other cases Ca2+ is sensed through intermediate calcium sensors such as calmodulin (CALM).More...
Within the compact cilia of the olfactory receptor neurons (......
Within the compact cilia of the olfactory receptor neurons (ORNs) a cascade of enzymatic activity transduces the binding of an odorant molecule to a receptor into an electrical signal that can be transmitted to the brain. Odorant molecules bind to a receptor protein (R) coupled to an olfactory specific Gs-protein (G) and activate a type III adenylyl cyclase (AC), increasing intracellular cAMP levels. cAMP targets an olfactory-specific cyclic-nucleotide gated ion channel (CNG), allowing cations, particularly Na and Ca, to flow down their electrochemical gradients into the cell, depolarizing the ORN. Furthermore, the Ca entering the cell is able to activate a Ca-activated Cl channel, which would allow Cl to flow out of the cell, thus further increasing the depolarization. Elevated intracellular Ca causes adaptation by at least two different molecular steps: inhibition of the activity of adenylyl cyclase via CAMKII-dependent phosphorylation and down-regulation of the affinity of the CNG channel to cAMP.Longer exposure to odorants can stimulate particulate guanylyl cyclase in cilia to produce cGMP and activate PKG, leading to a further increase in amount and duration of intracellular cAMP levels, which may serve to convert inactive forms of protein kinase A (PKA2) to active forms (PKA*). As part of a feedback loop, PKA can inhibit the activation of particulate guanylyl cyclase.More...
Calmodulin (CaM) is a small acidic protein that contains fou......
Calmodulin (CaM) is a small acidic protein that contains four EF-hand motifs, each of which can bind a calcium ion, therefore it can bind up to four calcium ions. The protein has two approximately symmetrical domains, separated by a flexible hinge region. Calmodulin is the prototypical example of the EF-hand family of Ca2+-sensing proteins. Changes in intracellular Ca2+ concentration regulate calmodulin in three distinct ways. First, by directing its subcellular distribution. Second, by promoting association with different target proteins. Third, by directing a variety of conformational states in calmodulin that result in target-specific activation. Calmodulin binds and activates several effector protein (e.g. the CaM-dependent adenylyl cyclases, phosphodiesterases, protein kinases and the protein phosphatase calcineurin).More...
Neurotrophins (NGF, BDNF, NT-3, NT-4/5) play pivotal roles i......
Neurotrophins (NGF, BDNF, NT-3, NT-4/5) play pivotal roles in survival, differentiation, and plasticity of neurons in the peripheral and central nervous system. They are produced, and secreted in minute amounts, by a variety of tissues. They signal through two types of receptors: TRK tyrosine kinase receptors (TRKA, TRKB, TRKC), which specifically interact with the different neurotrophins, and p75NTR, which interacts with all neurotrophins. TRK receptors are reported in a variety of tissues in addition to neurons. p75NTRs are also widespread. Neurotrophins and their receptors are synthesized as several different splice variants, which differ in terms of their biological activities. The nerve growth factor (NGF) was the first growth factor to be identified and has served as a model for studying the mechanisms of action of neurotrophins and growth factors. The mechanisms by which NGF generates diverse cellular responses have been studied extensively in the rat pheochromocytoma cell line PC12. When exposed to NGF, PC12 cells exit the cell cycle and differentiate into sympathetic neuron-like cells. Current data show that signalling by the other neurotrophins is similar to NGF signalling.More...
Opioids are chemical substances similar to opiates, the acti......
Opioids are chemical substances similar to opiates, the active substances found in opium (morphine, codeine etc.). Opioid action is mediated by the receptors for endogenous opioids; peptides such as the enkephalins, the endorphins or the dynorphins. Opioids possess powerful analgesic and sedative effects, and are widely used as pain-killers. Their main side-effect is the rapid establishment of a strong addiction. Opioids receptors are G-protein coupled receptors (GPCR). There are four classes of receptors: mu (MOR), kappa (KOR) and delta (DOR), and the nociceptin receptor (NOP).More...
The activation of phosphlipase C-gamma (PLC-gamma) and subse......
The activation of phosphlipase C-gamma (PLC-gamma) and subsequent mobilization of calcium from intracellular stores are essential for neurotrophin secretion. PLC-gamma is activated through the phosphorylation by TrkA receptor kinase and this form hydrolyses PIP2 to generate inositol tris-phosphate (IP3) and diacylglycerol (DAG). IP3 promotes the release of Ca2+ from internal stores and this results in activation of enzymes such as protein kinase C and Ca2+ calmodulin-regulated protein kinases.More...
The phospholipase C (PLC) family of enzymes is both diverse ......
The phospholipase C (PLC) family of enzymes is both diverse and complex. The isoforms beta, gamma and delta (each have subtypes) make up the members of this family. PLC hydrolyzes phosphatidylinositol bisphosphate (PIP2) into two second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 mobilizes intracellular calcium stores while DAG activates protein kinase C isoforms which are involved in regulatory functions.More...
Trk receptors signal from the plasma membrane and from intra......
Trk receptors signal from the plasma membrane and from intracellular membranes, particularly from early endosomes. Signalling from the plasma membrane is fast but transient; signalling from endosomes is slower but long lasting. Signalling from the plasma membrane is annotated here. TRK signalling leads to proliferation in some cell types and neuronal differentiation in others. Proliferation is the likely outcome of short term signalling, as observed following stimulation of EGFR (EGF receptor). Long term signalling via TRK receptors, instead, was clearly shown to be required for neuronal differentiation in response to neurotrophins.More...
PDE1C related interactors from protein-protein interaction data in HPRD (count: 0)