genes significantly affected in female MDD subjects
genes significantly affected in female MDD subjects
Positive relationships between DYNC1I1 and other components at different levels (count: 0)
Positive relationship network of DYNC1I1 in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between DYNC1I1 and MDD (count: 0)
Negative relationships between DYNC1I1 and other components at different levels (count: 0)
In the kidney, the antidiuretic hormone vasopressin (AVP) is......
In the kidney, the antidiuretic hormone vasopressin (AVP) is a critical regulator of water homeostasis by controlling the water movement from lumen to the interstitium for water reabsorption and adjusting the urinary water excretion. In normal physiology, AVP is secreted into the circulation by the posterior pituitary gland, in response to an increase in serum osmolality or a decrease in effective circulating volume. When reaching the kidney, AVP binds to V2 receptors on the basolateral surface of the collecting duct epithelium, triggering a G-protein-linked signaling cascade, which leads to water channel aquaporin-2 (AQP2) vesicle insertion into the apical plasma membrane. This results in higher water permeability in the collecting duct and, driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels, which are constitutively expressed on the basolateral side of these cells. When isotonicity is restored, reduced blood AVP levels results in AQP2 internalization, leaving the apical membrane watertight again.More...
DYNC1I1 related BioCarta pathways (count: 0)
DYNC1I1 related Reactome pathways (count: 0)
DYNC1I1 related interactors from protein-protein interaction data in HPRD (count: 7)