Genes altered in major depressive disorder
Genes altered in major depressive disorder
Positive relationships between CNTN2 and other components at different levels (count: 0)
Positive relationship network of CNTN2 in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between CNTN2 and MDD (count: 0)
Negative relationships between CNTN2 and other components at different levels (count: 0)
Cell adhesion molecules are (glyco)proteins expressed on the......
Cell adhesion molecules are (glyco)proteins expressed on the cell surface and play a critical role in a wide array of biologic processes that include hemostasis, the immune response, inflammation, embryogenesis, and development of neuronal tissue. There are four main groups: the integrin family, the immunoglobulin superfamily, selectins, and cadherins. Membrane proteins that mediate immune cellcell interactions fall into different categories, namely those involved in antigen recognition, costimulation and cellular adhesion. Furthermore cell-cell adhesions are important for brain morphology and highly coordinated brain functions such as memory and learning. During early development of the nervous system, neurons elongate their axons towards their targets and establish and maintain synapses through formation of cell-cell adhesions. Cell-cell adhesions also underpin axon-axon contacts and link neurons with supporting schwann cells and oligodendrocytes.More...
Axon guidance / axon pathfinding is the process by which neu......
Axon guidance / axon pathfinding is the process by which neurons send out axons to reach the correct targets. Growing axons have a highly motile structure at the growing tip called the growth cone, which senses the guidance cues in the environment through guidance cue receptors and responds by undergoing cytoskeletal changes that determine the direction of axon growth. Guidance cues present in the surrounding environment provide the necessary directional information for the trip. These extrinsic cues have been divided into attractive or repulsive signals that tell the growth cone where and where not to grow. Genetic and biochemical studies have led to the identification of highly conserved families of guidance molecules and their receptors that guide axons. These include netrins, Slits, semaphorins, and ephrins, and their cognate receptors, DCC and or uncoordinated-5 (UNC5), roundabouts (Robo), neuropilin and Eph. In addition, many other classes of adhesion molecules are also used by growth cones to navigate properly which include NCAM and L1CAM.More...
The neural cell adhesion molecule, NCAM, is a member of the ......
The neural cell adhesion molecule, NCAM, is a member of the immunoglobulin (Ig) superfamily and is involved in a variety of cellular processes of importance for the formation and maintenance of the nervous system. The role of NCAM in neural differentiation and synaptic plasticity is presumed to depend on the modulation of intracellular signal transduction cascades. NCAM based signaling complexes can initiate downstream intracellular signals by at least two mechanisms: (1) activation of FGFR and (2) formation of intracellular signaling complexes by direct interaction with cytoplasmic interaction partners such as Fyn and FAK. Tyrosine kinases Fyn and FAK interact with NCAM and undergo phosphorylation and this transiently activates the MAPK, ERK 1 and 2, cAMP response element binding protein (CREB) and transcription factors ELK and NFkB. CREB activates transcription of genes which are important for axonal growth, survival, and synaptic plasticity in neurons. NCAM1 mediated intracellular signal transduction is represented in the figure below. The Ig domains in NCAM1 are represented in orange ovals and Fn domains in green squares. The tyrosine residues susceptible to phosphorylation are represented in red circles and their positions are numbered. Phosphorylation is represented by red arrows and dephosphorylation by yellow. Ig, Immunoglobulin domain; Fn, Fibronectin domain; Fyn, Proto-oncogene tyrosine-protein kinase Fyn; FAK, focal adhesion kinase; RPTPalpha, Receptor-type tyrosine-protein phosphatase; Grb2, Growth factor receptor-bound protein 2; SOS, Son of sevenless homolog; Raf, RAF proto-oncogene serine/threonine-protein kinase; MEK, MAPK and ERK kinase; ERK, Extracellular signal-regulated kinase; MSK1, Mitogen and stress activated protein kinase 1; CREB, Cyclic AMP-responsive element-binding protein; CRE, cAMP response elements.More...
The neural cell adhesion molecule, NCAM1 is generally consid......
The neural cell adhesion molecule, NCAM1 is generally considered as a cell adhesion mediator, but it is also considered to be a signal transducing receptor molecule. NCAM1 is involved in multiple cis- and trans-homophilic interactions. It is also involved in several heterophilic interactions with a broad range of other molecules, thereby modulating diverse biological phenomena including cellular adhesion, migration, proliferation, differentiation, survival and synaptic plasticity.More...
CNTN2 related interactors from protein-protein interaction data in HPRD (count: 8)