We observed a significant excess of the T allele in subjects......
We observed a significant excess of the T allele in subjects with major depression, as compared with controls (49% vs. 38%; P = 0.003)More...
Positive relationships between ACSL4 and other components at different levels (count: 0)
Positive relationship network of ACSL4 in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between ACSL4 and MDD (count: 0)
Negative relationships between ACSL4 and other components at different levels (count: 0)
Increased adipocyte volume and number are positively correla......
Increased adipocyte volume and number are positively correlated with leptin production, and negatively correlated with production of adiponectin. Leptin is an important regulator of energy intake and metabolic rate primarily by acting at hypothalamic nuclei. Leptin exerts its anorectic effects by modulating the levels of neuropeptides such as NPY, AGRP, and alpha-MSH. This leptin action is through the JAK kinase, STAT3 phosphorylation, and nuclear transcriptional effect. Adiponectin lowers plasma glucose and FFAs. These effects are partly accounted for by adiponectin-induced AMPK activation, which in turn stimulates skeletal muscle fatty acid oxidation and glucose uptake. Furthermore, activation of AMPK by adiponectin suppresses endogenous glucose production, concomitantly with inhibition of PEPCK and G6Pase expression. The proinflammatory cytokine TNFalpha has been implicated as a link between obesity and insulin resistance. TNFalpha interferes with early steps of insulin signaling. Several data have shown that TNFalpha inhibits IRS1 tyrosine phosphorylation by promoting its serine phosphorylation. Among the serine/threonine kinases activated by TNFalpha, JNK, mTOR and IKK have been shown to be involved in this phosphorylation.More...
Peroxisomes are essential organelles that play a key role in......
Peroxisomes are essential organelles that play a key role in redox signalling and lipid homeostasis. They contribute to many crucial metabolic processes such as fatty acid oxidation, biosynthesis of ether lipids and free radical detoxification. The biogenesis of peroxisomes starts with the early peroxins PEX3, PEX16 and PEX19 and proceeds via several steps. The import of membrane proteins into peroxisomes needs PEX19 for recognition, targeting and insertion via docking at PEX3. Matrix proteins in the cytosol are recognized by peroxisomal targeting signals (PTS) and transported to the docking complex at the peroxisomal membrane. Peroxisomes' deficiencies lead to severe and often fatal inherited peroxisomal disorders (PD). PDs are usually classified in two groups. The first group is disorders of peroxisome biogenesis which include Zellweger syndrome, and the second group is single peroxisomal enzyme deficiencies.More...
Peroxisome proliferator-activated receptors (PPARs) are nucl......
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that are activated by fatty acids and their derivatives. PPAR has three subtypes (PPARalpha, beta/delta, and gamma) showing different expression patterns in vertebrates. Each of them is encoded in a separate gene and binds fatty acids and eicosanoids. PPARalpha plays a role in the clearance of circulating or cellular lipids via the regulation of gene expression involved in lipid metabolism in liver and skeletal muscle. PPARbeta/delta is involved in lipid oxidation and cell proliferation. PPARgamma promotes adipocyte differentiation to enhance blood glucose uptake.More...
ACSL4 related BioCarta pathways (count: 0)
ACSL4 related Reactome pathways (count: 0)
ACSL4 related interactors from protein-protein interaction data in HPRD (count: 0)