"Mostafavi et al studied gene expression differences between......
"Mostafavi et al studied gene expression differences between 463 MDD cases and 459 controls using RNA-seq measurements. The P-values and directions of effects from this study were compared and meta-analyzed with our findings.When meta analyzing the P-values from the two studies, (weighted Z-score method), 12 genes were differentially expressed at FDRo0.1 (CALM1, FCRL6, APOBEC3G, SRSF5, RAP2B, PIPOX, PRR5L, HAGHL, ARL4C, NMUR1, KLRD1 and KCNJ2)"More...
Positive relationships between KLRD1 and other components at different levels (count: 0)
Positive relationship network of KLRD1 in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between KLRD1 and MDD (count: 0)
Negative relationships between KLRD1 and other components at different levels (count: 0)
Graft-versus-host disease (GVHD) pathophysiology can be summ......
Graft-versus-host disease (GVHD) pathophysiology can be summerized in a three-step process. During step 1, the conditioning regimen (irradiation and/or chemotherapy) leads to damage, activation of host tissues and induction of inflammatory cytokines secretion. Increased expression of major histocompatibility complex (MHC) antigens and adhesion molecules leads to enhancement of the recognition of host MHC and/or minor histocompatibility antigens by mature donor T cells. Donor T-cell activation in step II is characterized by the predominance of Th1 cells and the secretion of IL-2 and IFN-gamma. These cytokines induce further T-cell expansion, induce cytotoxic T lymphocytes (CTL) and natural killer (NK) cells responses and prime additional mononuclear phagocytes to produce TNF-alpha and IL-1. Also, nitric oxide (NO) is produced by activated macrophages, and it may contribute to the tissue damage seen during step 3. Lipopolysaccharide (LPS), which leaks through the intestinal mucosa that was damaged during step 1, together with IFN-gamma, from step 2, further stimulate macrophages to secrete cytokines and NO. During step 3, the effector phase, activated CTL and NK cells mediate cytotoxicity against target host cells through Fas-Fas ligand interactions and perforin-granzyme B.More...
Natural killer (NK) cells are lymphocytes of the innate immu......
Natural killer (NK) cells are lymphocytes of the innate immune system that are involved in early defenses against both allogeneic (nonself) cells and autologous cells undergoing various forms of stress, such as infection with viruses, bacteria, or parasites or malignant transformation. Although NK cells do not express classical antigen receptors of the immunoglobulin gene family, such as the antibodies produced by B cells or the T cell receptor expressed by T cells, they are equipped with various receptors whose engagement allows them to discriminate between target and nontarget cells. Activating receptors bind ligands on the target cell surface and trigger NK cell activation and target cell lysis. However Inhibitory receptors recognize MHC class I molecules (HLA) and inhibit killing by NK cells by overruling the actions of the activating receptors. This inhibitory signal is lost when the target cells do not express MHC class I and perhaps also in cells infected with virus, which might inhibit MHC class I exprssion or alter its conformation. The mechanism of NK cell killing is the same as that used by the cytotoxic T cells generated in an adaptive immune response; cytotoxic granules are released onto the surface of the bound target cell, and the effector proteins they contain penetrate the cell membrane and induce programmed cell death.More...
Ras-Independent pathway in NK cell-mediated cytotoxicity
NK (natural killer) cells are lymphocytes distinct from B an......
NK (natural killer) cells are lymphocytes distinct from B and T cells that induce perforin-mediated lysis of tumor cells and virus-infected cells. NK cell-mediated cytotoxicity is activated by glycoproteins on the cell surface (activating receptors) and inhibited by MHC-1 with self-peptide bound. The MHC-1 inhibitory signal through Ig-family or lectin receptors prevents NK cells from killing normal cells. Abnormal MHC-1 expression in infected or tumor cells results in the release of perforin, the lysis of the abnormal cell and the release of cytokines that stimulate the immune response. MAP kinase inhibitors but not ras inhibitors are able to block NK cell cytotoxicity, indicating that the pathway can function by a ras-independent manner that involves the MAP kinase pathway. This pathway includes phosphoinositide-3-kinase (PI3K) as a key component, followed by Rac1 and the exchange factor Vav. The tyrosine kinase SYK and LAT may provide an additional pathway for activation of MAP kinases leading to NK cell activation, and also Pyk-2 activation by integrins. The protein tyrosine phosphatase SHP-1 appears to mediate the cytotoxicity inhibitory signal that blocks lysis of normal cells. The balance of these positive and negative signaling pathways regulates the role of NK cells in the immune response.More...
A number of receptors and cell adhesion molecules play a key......
A number of receptors and cell adhesion molecules play a key role in modifying the response of cells of lymphoid origin (such as B-, T- and NK cells) to self and tumor antigens, as well as to pathogenic organisms. Molecules such as KIRs and LILRs form part of a crucial surveillance system that looks out for any derangement, usually caused by cancer or viral infection, in MHC Class I presentation. Somatic cells are also able to report internal functional impairment by displaying surface stress markers such as MICA. The presence of these molecules on somatic cells is picked up by C-lectin NK immune receptors. Lymphoid cells are able to regulate their location and movement in accordance to their state of activation, and home in on tissues expressing the appropriate complementary ligands. For example, lymphoid cells may fine tune the presence and concentration of adhesion molecules belonging to the IgSF, Selectin and Integrin class that interact with a number of vascular markers of inflammation. Furthermore, there are a number of avenues through which lymphoid cells may interact with antigen. This may be presented directly to a specific T-cell receptor in the context of an MHC molecule. Antigen-antibody complexes may anchor to the cell via a small number of lymphoid-specific Fc receptors that may, in turn, influence cell function further. Activated complement factor C3d binds to both antigen and to cell surface receptor CD21. In such cases, the far-reaching influence of CD19 on B-lymphocyte function is tempered by its interaction with CD21.More...
Humans are exposed to millions of potential pathogens daily,......
Humans are exposed to millions of potential pathogens daily, through contact, ingestion, and inhalation. Our ability to avoid infection depends on the adaptive immune system and during the first critical hours and days of exposure to a new pathogen, our innate immune system.More...
KLRD1 related interactors from protein-protein interaction data in HPRD (count: 7)