Positive relationships between CITED2 and other components at different levels (count: 0)
Positive relationship network of CITED2 in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between CITED2 and MDD (count: 0)
Negative relationships between CITED2 and other components at different levels (count: 0)
Mechanism of Gene Regulation by Peroxisome Proliferators via PPARa(alpha)
The most recognized mechanism by which peroxisome proliferat......
The most recognized mechanism by which peroxisome proliferators regulated gene expresssion is through a PPAR/RXR heterodimeric complex binding to a peroxisome proliferator-response element (PPRE) (classical mechanism). However, there are the possibility of several variations on this theme: 1). The peroxisome proliferator interacts with PPAR that preexists as a DNA complex with associated corepressors proteins. The interaction with ligand causes release of the corepressor and association with a coactivator, resulting in the classical mechanism. 2). The peroxisome proliferator interacts with PPAR as a soluble member of the nucleus. The binding of ligand results in RXR heterodimerization, DNA binding and coactivator recruitment. 3). In this scenario, PPAR exists in the cytosol, perhaps complexed to heat shock protein 90 and/or other chaperones. Binding of peroxisome proliferator causes a conformational change and translocation into the nucleus. Scenarios 4 and 5 require regulation of gene expression via non-classical mechanisms: 4). PPAR is capable of interacting with, and forming DNA binding heterodimers with, several nuclear receptors including the thyroid hormone receptor. The binding site for this non-RXR heterodimer need not be the classic DR-1 motif found in the PPRE. 5). PPAR may participate in the regulation of gene expression witout binding to DNA. By association with transcription factors such as c-jun or p65, PPAR diminishes the ability of AP1 or NFB to bind to their cognate DNA sequences, respectively. Also shown in this scheme are two means to modify the peroxisome proliferator response. Most importantly, growth factor signaling has a pronounced affect on PPAR via post-translational modification. PPAR is a phosphoprotein and its activity is affected by insulin. Several kinase pathways affects PPARa's activity, although the specific kinases and phosphorylation sites have not been conclusively determined.More...
CITED2 related Reactome pathways (count: 0)
CITED2 related interactors from protein-protein interaction data in HPRD (count: 7)