AR gene in MDD group have shorter microsatellites' length, a......
AR gene in MDD group have shorter microsatellites' length, and ER beta gene have shorter microsatellites' length and higher rates of S alleles, SS, genotype, and lower rate of LL genotype than control group.More...
The results showed that there were differences between adole......
The results showed that there were differences between adolescent depressive patients and adolescent controls in CAG repeats' length and alleles' distributions, and the severity of depression and anxiety was negatively correlated with the length of CAG repeats in adolescent patients. More...
Positive relationships between AR and other components at different levels (count: 3)
Genetic/epigenetic locus
Protein and other molecule
Cell and molecular pathway
Neural system
Cognition and behavior
Symptoms and signs
Environment
Positive relationship network of AR in MK4MDD
Network loading ...
Note:
1. The different color of the nodes denotes the level of the nodes.
Genetic/Epigenetic Locus
Protein and Other Molecule
Cell and Molecular Pathway
Neural System
Cognition and Behavior
Symptoms and Signs
Environment
MDD
2. Besides the component related relationships from literature, gene mapped protein and protein mapped gene are also shown in the network.
If the mapped gene or protein is not from literature, square node would be used instead of Circle node.
Accordingly, the relationship is marked with dot line.
2. User can drag the nodes to rearrange the layout of the network. Click the node will enter the report page of the node.
Right-click will show also the menus to link to the report page of the node and remove the node and related edges.
Hover the node will show the level of the node and hover the edge will show the evidence/description of the edge.
3. The network is generated using Cytoscape Web
Negative relationships between AR and MDD (count: 0)
Negative relationships between AR and other components at different levels (count: 0)
The identification of key molecular alterations in prostate-......
The identification of key molecular alterations in prostate-cancer cells implicates carcinogen defenses (GSTP1), growth-factor-signaling pathways (NKX3.1, PTEN, and p27), and androgens (AR) as critical determinants of the phenotype of prostate-cancer cells. Glutathione S-transferases (GSTP1) are detoxifying enzymes that catalyze conjunction of glutathione with harmful, electrophilic molecules, thereby protecting cells from carcinogenic factors. Cells of prostatic intraepithelial neoplasia, devoid of GSTP1, undergo genomic damage mediated by such carcinogens. NKX3.1, PTEN, and p27 regulate the growth and survival of prostate cells in the normal prostate. Inadequate levels of PTEN and NKX3.1 lead to a reduction in p27 levels and to increased proliferation and decreased apoptosis. After therapeutic reduction in the levels of testosterone and dihydrotestosterone, the emergence of androgen-independent prostate cancer has been associated with mutations in the androgen receptor (AR) that permit receptor activation by other ligands, increased expression of androgen receptors accompanying AR amplification, and ligand-independent androgen-receptor activation.More...
During meiosis, a single round of DNA replication is followe......
During meiosis, a single round of DNA replication is followed by two rounds of chromosome segregation, called meiosis I and meiosis II. At meiosis I, homologous chromosomes recombine and then segregate to opposite poles, while the sister chromatids segregate from each other at meoisis II. In vertebrates, immature oocytes are arrested at the PI (prophase of meiosis I). The resumption of meiosis is stimulated by progesterone, which carries the oocyte through two consecutive M-phases (MI and MII) to a second arrest at MII. The key activity driving meiotic progression is the MPF (maturation-promoting factor), a heterodimer of CDC2 (cell division cycle 2 kinase) and cyclin B. In PI-arrested oocytes, MPF is initially inactive and is activated by the dual-specificity CDC25C phosphatase as the result of new synthesis of Mos induced by progesterone. MPF activation mediates the transition from the PI arrest to MI. The subsequent decrease in MPF levels, required to exit from MI into interkinesis, is induced by a negative feedback loop, where CDC2 brings about the activation of the APC (anaphase-promoting complex), which mediates destruction of cyclin B. Re-activation of MPF for MII requires re-accumulation of high levels of cyclin B as well as the inactivation of the APC by newly synthesized Emi2 and other components of the CSF (cytostatic factor), such as cyclin E or high levels of Mos. CSF antagonizes the ubiquitin ligase activity of the APC, preventing cyclin B destruction and meiotic exit until fertilization occurs. Fertilization triggers a transient increase in cytosolic free Ca2+, which leads to CSF inactivation and cyclin B destruction through the APC. Then eggs are released from MII into the first embryonic cell cycle.More...
A classic example of bifunctional transcription factors is t......
A classic example of bifunctional transcription factors is the family of Nuclear Receptor ). For example, binding of thyroid hormone (TH) to the human TH Receptor (THRA or THRB) was found to result in the recruitment of a specific complex of Thyroid Receptor Associated Proteins - the TRAP coactivator complex - of which the TRAP220 subunit was later identified to be the Mediator 1 (MED1) homologue. Similarly, binding of Vitamin D to the human Vitamin D3 Receptor was found to result in the recruitment of a specific complex of D Receptor Interacting Proteins - the DRIP coactivator complex, of which the DRIP205 subunit was later identified to be human MED1.More...
Gene Expression covers the process of transcription of mRNA ......
Gene Expression covers the process of transcription of mRNA genes, the processing of pre-mRNA, and its subsequent translation to result in a protein. The expression of non-protein-coding genes is not included in this section yet. However, the transcription of RNAs other than mRNA is described in the section on transcription; in the sections 'RNA Polymerase I Transcription', and 'RNA Polymerase III Transcription'.More...
AR related interactors from protein-protein interaction data in HPRD (count: 151)